Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181722

RESUMO

The dynamics of a hydrogen bonding network (HBN) relating to macroscopic properties of hydrogen bonding liquids were observed as a significant relaxation process by dielectric spectroscopy measurements. In the cases of water and water rich mixtures including biological systems, a GHz frequency relaxation process appearing at around 20 GHz with the relaxation time of 8.2 ps is generally observed at 25 °C. The GHz frequency process can be explained as a rate process of exchanges in hydrogen bond (HB) and the rate becomes higher with increasing HB density. In the present work, this study analyzed the GHz frequency process observed by suitable open-ended coaxial electrodes, and physical meanings of the fractal nature of water structures were clarified in various aqueous systems. Dynamic behaviors of HBN were characterized by a combination of the average relaxation time and the distribution of the relaxation time. This fractal analysis offered an available approach to both solution and dispersion systems with characterization of the aggregation or dispersion state of water molecules. In the case of polymer-water mixtures, the HBN and polymer networks penetrate each other, however, the HBN were segmented and isolated more by dispersed and aggregated particles in the case of dispersion systems. These HBN fragments were characterized by smaller values of the fractal dimension obtained from the fractal analysis. Some examples of actual usages suggest that the fractal analysis is now one of the most effective tools to understand the molecular mechanism of HBN in aqueous complex materials including biological systems.


Assuntos
Eletrodos , Água/química , Espectroscopia Dielétrica
2.
J Oleo Sci ; 66(3): 235-249, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28190809

RESUMO

Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil < OA-oil < SO-oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.


Assuntos
Óleos de Plantas/química , Cloreto de Sódio/química , Fenômenos Eletromagnéticos , Eletroumectação , Ácido Oleico/química , Óleo de Brassica napus , Tensão Superficial
3.
J Am Chem Soc ; 131(40): 14146-7, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19757784

RESUMO

We fabricated Au-TTF-Au (tetrathiafulvalene, TTF) and Au-TSF-Au (tetraselenafulvalene, TSF) single-molecule junctions using a nanofabricated mechanically controllable break junction. We found that Au-TSF-Au and Au-TTF-Au single-molecule junctions have one and two stable configurations, respectively, and that the Au-TTF-Au single-molecule conductance is larger than that of Au-TSF-Au. The difference in single-molecule conductances of the two types of junctions originates from the difference in the strength of the molecule-electrode coupling through face-to-face overlapping configurations.

4.
Nanoscale ; 1(1): 164-70, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20644876

RESUMO

Single molecule identification in metal-molecule-metal junctions provides an ultimate probe that opens a new avenue for revolutionary advances in demonstrating single molecule device functions. Inelastic electron tunneling spectroscopy (IETS) is an ultra-sensitive method for probing vibrational characteristics of molecules with atomic resolution. State-of-the-art experiments on the inelastic transport in self-assembled monolayers of organic molecules have demonstrated the utility of the IETS technique to derive structural information concerning molecular conformations and contact configurations. Here we report the vibrational fingerprint of an individual pi-conjugated molecule sandwiched between gold nanoelectrodes. Our strategy combines analyses of single molecule conductance and vibrational spectra exploiting the nanofabricated mechanically-controllable break junction. We performed IETS measurements on 1,4-benzenedithiol and 2,5-dimercapto-1,3,4-thiadiazole to examine chemical discrimination at the single-molecule level. We found distinct IET spectra unique to the test molecules that agreed excellently with the Raman and theoretical spectra in the fingerprint region, and thereby succeeded in electrical identification of single molecule junctions.

5.
Nano Lett ; 8(1): 345-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18095741

RESUMO

The self-breaking mechanism of gold junctions is studied by investigating stability of the atom-sized contacts. The single atom contact lifetime increases from about 0.02 to 200 s upon decreasing the junction stretching speed, while at the same time, the breaking force diminishes logarithmically. We find that the junction self-breaking processes involve sufficient atomic rearrangements, which thereby allow complete self-compensation of externally introduced strain at 0.8 pm/s. The present results have important implications on fabrication of stable single molecule junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...